Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology

脑淀粉样变性患者中基于多组学的自噬相关非典型亚型

阅读:5
作者:Jong-Chan Park, Natalia Barahona-Torres, So-Yeong Jang, Kin Y Mok, Haeng Jun Kim, Sun-Ho Han, Kwang-Hyun Cho, Xiaopu Zhou, Amy K Y Fu, Nancy Y Ip, Jieun Seo, Murim Choi, Hyobin Jeong, Daehee Hwang, Dong Young Lee, Min Soo Byun, Dahyun Yi, Jong Won Han, Inhee Mook-Jung, John Hardy

Abstract

Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aβ+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aβ- and 90 Aβ+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aβ-, 5 Aβ+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。