Abstract
Mesenchymal stem cells (MSCs) have emerged as crucial players within the tumor microenvironment (TME), contributing through their paracrine secretome. Depending on the context, the MSC-derived secretome can either support or inhibit tumor growth. This study investigates the role of MSC-derived secretome in modulating breast cancer (BC) cell behavior, with a focus on ten-eleven translocation 1 (TET1), a DNA demethylase with known oncogenic properties in triple-negative breast cancer (TNBC). We first isolated and characterized human bone marrow-derived MSCs, and then assessed the impact of their secretome on BC cells. Treatment with the MSC-derived secretome significantly inhibited the proliferation and migration of both MDA-MB-231 and MCF-7 BC cell lines, resulting in reduced cell viability and migration rates compared to control cells. Western blot analyses revealed downregulation of Cyclin D1 and c-Myc, along with decreased expression of N-cadherin and increased expression of E-cadherin, indicating potential inhibition of the epithelial-to-mesenchymal transition. Differential gene expression analyses highlighted TET1 as significantly upregulated in TNBC tissues compared to normal samples. Further experiments confirmed that the MSC-derived secretome downregulated TET1 expression in BC cells, as evidenced by RT-qPCR and western blot analyses. To explore TET1's functional role, we silenced TET1 with siRNAs, observing cell cycle arrest and enhanced apoptosis-effects that mirrored those seen with MSC-secretome treatment. Notably, TET1 knockdown also increased MDA-MB-231 cell sensitivity to cisplatin, suggesting a role for TET1 in chemoresistance. These findings provide insight into the ability of MSCs to modulate BC cell progression through their secretome, highlighting the involvement of TET1 downregulation in inhibiting BC cell progression and enhancing cisplatin chemosensitivity. The MSC-derived secretome thus holds promise as an innovative, cell-free therapeutic approach in BC treatment.
