Intercellular communication atlas reveals Oprm1 as a neuroprotective factor for retinal ganglion cells

细胞间通讯图谱揭示 Oprm1 是视网膜神经节细胞的神经保护因子

阅读:4
作者:Cheng Qian, Ying Xin, Qi Cheng, Hui Wang, Donald Zack, Seth Blackshaw, Samer Hattar, Zhou Feng-Quan, Jiang Qian

Abstract

The progressive death of mature neurons often results in neurodegenerative diseases. While the previous studies have mostly focused on identifying intrinsic mechanisms controlling neuronal survival, the extracellular environment also plays a critical role in regulating cell viability. Here we explore how intercellular communication contributes to the survival of retinal ganglion cells (RGCs) following the optic nerve crush (ONC). Although the direct effect of the ONC is restricted to the RGCs, we observed transcriptomic responses in other retinal cells to the injury based on the single-cell RNA-seq, with astrocytes and Müller glia having the most interactions with RGCs. By comparing the RGC subclasses showing distinct resilience to ONC-induced cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with other retinal cells, suggesting that these RGCs are intrinsically programmed to foster more communication with their surroundings. Furthermore, we identified top 47 interactions that are stronger in the high-survival RGCs, likely representing neuroprotective interactions. We performed functional assays on one of the receptors, μ opioid receptor (Oprm1), a receptor known to play roles in regulating pain, reward, and addictive behavior. Although Oprm1 is preferentially expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs), its neuroprotective effect could be transferred to multiple RGC subclasses by specific overexpressing Oprm1 in pan-RGCs in ONC, excitotoxicity, and glaucoma models. Lastly, manipulating Oprm1 activity improved visual functions and altered pupillary light response in mice. Our study provides an atlas of cell-cell interactions in both intact and post-ONC retina and an effective strategy to predict molecular mechanisms in neuroprotection, underlying the principal role played by extracellular environment in supporting neuron survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。