Structural basis for glucosylsucrose synthesis by a member of the α-1,2-glucosyltransferase family

α-1,2-葡萄糖基转移酶家族成员合成葡萄糖基蔗糖的结构基础

阅读:4
作者:Qiuyu Han, Yuan Yao, Yuhan Liu, Wenlu Zhang, Jinyi Yu, Heya Na, Tianhao Liu, Kevin H Mayo, Jiyong Su

Abstract

Glucosylsucroses are potentially useful as additives in cosmetic and pharmaceutical formulations. Although enzymatic synthesis of glucosylsucroses is the most efficient method for their production, the key enzyme that produces them has remained unknown. Here, we report that glucosylsucrose synthase from (TeGSS) catalyzes the synthesis of glucosylsucrose using sucrose and UDP-glucose as substrates. These saccharides are homologous to glucosylsucroses produced by sp. PCC 7120 (referred to as protein alr1000). When the ratio of UDP-glucose to sucrose is relatively high, TeGSS from cyanobacteria can hydrolyze excess UDP-glucose to UDP and glucose, indicating that sucrose provides a feedback mechanism for the control of glucosylsucrose synthesis. In the present study, we solved the crystal structure of TeGSS bound to UDP and sucrose. Our structure shows that the catalytic site contains a circular region that may allow glucosylsucroses with a right-hand helical structure to enter the catalytic site. Because active site residues Tyr18 and Arg179 are proximal to UDP and sucrose, we mutate these residues (., Y18F and R179A) and show that they exhibit very low activity, supporting their role as catalytic groups. Overall, our study provides insight into the catalytic mechanism of TeGSS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。