Reprogramming of the microRNA transcriptome mediates resistance to rapamycin

microRNA 转录组重编程介导对雷帕霉素的耐药性

阅读:5
作者:Hana Totary-Jain, Despina Sanoudou, Iddo Z Ben-Dov, Cula N Dautriche, Paolo Guarnieri, Steven O Marx, Thomas Tuschl, Andrew R Marks

Abstract

The mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation that is often deregulated in cancer. Inhibitors of mTOR, including rapamycin and its analogues, are being evaluated as antitumor agents. For their promise to be fulfilled, it is of paramount importance to identify the mechanisms of resistance and develop novel therapies to overcome it. Given the emerging role of microRNAs (miRNAs) in tumorigenesis, we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Long-term rapamycin treatment showed extensive reprogramming of miRNA expression, characterized by up-regulation of miR-17-92 and related clusters and down-regulation of tumor suppressor miRNAs. Inhibition of members of the miR-17-92 clusters or delivery of tumor suppressor miRNAs restored sensitivity to rapamycin. This study identifies miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors. It also identifies potential markers to assess the efficacy of treatment and provides novel therapeutic targets to treat rapamycin-resistant tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。