Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain

RNA聚合酶II C末端重复结构域相互作用组的蛋白质组学研究

阅读:6
作者:Gabriel Pineda, Zhouxin Shen, Claudio Ponte de Albuquerque, Eduardo Reynoso, Jeffrey Chen, Chi-Chiang Tu, Wingchung Tang, Steve Briggs, Huilin Zhou, Jean Y J Wang8

Background

Eukaryotic RNA polymerase II contains a C-terminal repeated domain (CTD) consisting of 52 consensus heptad repeats of Y1S2P3T4S5P6S7 that mediate interactions with many cellular proteins to regulate transcription elongation, RNA processing and chromatin structure. A number of CTD-binding proteins have been identified and the crystal structures of several protein-CTD complexes have demonstrated considerable conformational flexibility of the heptad repeats in those interactions. Furthermore, phosphorylation of the CTD at tyrosine, serine and threonine residues can regulate the CTD-protein interactions. Although the interactions of CTD with specific proteins have been elucidated at the atomic level, the capacity and specificity of the CTD-interactome in mammalian cells is not yet determined.

Conclusion

Upon phosphorylation, the 52 repeats of the CTD have the capacity to generate a large number of binding sites for cellular proteins. This study confirms previous findings that serine phosphorylation stimulates whereas tyrosine phosphorylation inhibits the protein-binding activity of the CTD. However, tyrosine phosphorylation of the CTD can also stimulate other CTD-protein interactions. The CTD-peptide affinity pull-down method described here can be adopted to survey the mammalian CTD-interactome in various cell types and under different biological conditions.

Results

A proteomic study was conducted to examine the mammalian CTD-interactome. We utilized six synthetic peptides each consisting of four consensus CTD-repeats with different combinations of serine and tyrosine phosphorylation as affinity-probes to pull-down nuclear proteins from HeLa cells. The pull-down fractions were then analyzed by MUDPIT mass spectrometry, which identified 100 proteins with the majority from the phospho-CTD pull-downs. Proteins pulled-down by serine-phosphorylated CTD-peptides included those containing the previously defined CTD-interacting domain (CID). Using SILAC mass spectrometry, we showed that the in vivo interaction of RNA polymerase II with the mammalian CID-containing RPRD1B is disrupted by CID mutation. We also showed that the CID from four mammalian proteins interacted with pS2-phosphorylated but not pY1pS2-doubly phosphorylated CTD-peptides. However, we also found proteins that were preferentially pulled-down by pY1pS2- or pY1pS5-doubly phosphorylated CTD-peptides. We prepared an antibody against tyrosine phosphorylated CTD and showed that ionizing radiation (IR) induced a transient increase in CTD tyrosine phosphorylation by immunoblotting. Combining SILAC and IMAC purification of phospho-peptides, we found that IR regulated the phosphorylation at four CTD tyrosine sites in different ways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。