Homogeneous and bioluminescent biochemical and cellular assay for monitoring cGAMP and enzymes that generate and degrade cGAMP

用于监测 cGAMP 以及生成和降解 cGAMP 的酶的均质和生物发光生化和细胞分析

阅读:5
作者:Kevin Hsiao, Nathan H Murray, Dareen Mikheil, Matthew A Larsen, Hui Wang, Tim Ugo, Said A Goueli

Abstract

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP). Furthermore, cellular and extracellular cGAMP concentrations are also controlled by ENPP1, an enzyme that breaks down cGAMP to AMP and GMP. Therefore, the role of the cGAS-STING signaling pathway has generated great interest in inflammatory and cancer research. To advance our understanding of innate immune system and in particular the STING pathway, we have developed a homogeneous, bioluminescent cGAMP detection assay that is very sensitive and highly selective against other nucleotides, cyclic nucleotides, and dicyclic nucleotides. The assay can be also used to monitor the activity of cGAS and ENPP1 to enable the development of inhibitors of both enzymes which might be used for therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。