Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses

东莨菪碱迅速增加哺乳动物雷帕霉素复合物 1 信号、突触形成和抗抑郁行为反应

阅读:8
作者:Bhavya Voleti, Andrea Navarria, Rong-Jian Liu, Mounira Banasr, Nanxin Li, Rose Terwilliger, Gerard Sanacora, Tore Eid, George Aghajanian, Ronald S Duman

Background

Clinical studies report that scopolamine, an acetylcholine muscarinic receptor antagonist, produces rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic response have not been determined. The present study examines the role of the mammalian target of rapamycin complex 1 (mTORC1) and synaptogenesis, which have been implicated in the rapid actions of N-methyl-D-aspartate receptor antagonists.

Conclusions

Taken together, the results demonstrate that the antidepressant actions of scopolamine require mTORC1 signaling and are associated with increased glutamate transmission, and synaptogenesis, similar to N-methyl-D-aspartate receptor antagonists. These findings provide novel targets for safer and more efficacious rapid-acting antidepressant agents.

Methods

The influence of scopolamine on mTORC1 signaling was determined by analysis of the phosphorylated and activated forms of mTORC1 signaling proteins in the prefrontal cortex (PFC). The numbers and function of spine synapses were analyzed by whole cell patch clamp recording and two-photon image analysis of PFC neurons. The actions of scopolamine were examined in the forced swim test in the absence or presence of selective mTORC1 and glutamate receptor inhibitors.

Results

The results demonstrate that a single, low dose of scopolamine rapidly increases mTORC1 signaling and the number and function of spine synapses in layer V pyramidal neurons in the PFC. Scopolamine administration also produces an antidepressant response in the forced swim test that is blocked by pretreatment with the mTORC1 inhibitor or by a glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist. Conclusions: Taken together, the results demonstrate that the antidepressant actions of scopolamine require mTORC1 signaling and are associated with increased glutamate transmission, and synaptogenesis, similar to N-methyl-D-aspartate receptor antagonists. These findings provide novel targets for safer and more efficacious rapid-acting antidepressant agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。