Crossovers are regulated by a conserved and disordered synaptonemal complex domain

交叉是由保守和无序的联会复合体域调控的

阅读:6
作者:Ana Rita Rodrigues Neves, Ivana Čavka, Tobias Rausch, Simone Köhler

Abstract

During meiosis, the number and distribution of crossovers (COs) must be precisely regulated through CO assurance and interference to prevent chromosome missegregation and genomic instability in the progeny. Here we show that this regulation of COs depends on a disordered and conserved domain within the synaptonemal complex (SC). This domain is located at the C-terminus of the central element protein SYP-4 in Caenorhabditis elegans. While not necessary for synapsis, the C-terminus of SYP-4 is crucial for both CO assurance and interference. Although the SYP-4 C-terminus contains many potential phosphorylation sites, we found that phosphorylation is not the primary regulator of CO events. Instead, we discovered that nine conserved phenylalanines are required to recruit a pro-CO factor predicted to be an E3 ligase and regulate the physical properties of the SC. We propose that this conserved and disordered domain plays a crucial role in maintaining the SC in a state that allows transmitting signals to regulate CO formation. While the underlying mechanisms remain to be fully understood, our findings align with existing models suggesting that the SC plays a critical role in determining the number and distribution of COs along chromosomes, thereby safeguarding the genome for future generations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。