Background
This article examines the use of a novel nano-system, gold nanoparticles coated with indolicidin (AuNPs-indolicidin), against pathogenic Candida albicans biofilms. Candida species cause frequent infections owing to their ability to form biofilms, primarily on implant devices. Materials and
Conclusion
These data provide a chance to develop novel therapies against nosocomially acquired refractory C. albicans biofilms.
Methods
We used an integrated approach, evaluating the effect of AuNPs-indolicidin on prevention and eradication of Candida biofilms formed in multi-well polystyrene plates, with relative gene expression assays. Four biofilm-associated genes (FG1, HWP1, ALS1 and ALS3, and CDR1 and CDR2) involved in efflux pump were analyzed using reverse transcription polymerase chain reaction.
Results
Treatment with the nano-complex significantly inhibits the capacity of C. albicans to form biofilms and impairs preformed mature biofilms. Treatment with AuNPs-indolicidin results in an increase in the kinetics of Rhodamine 6G efflux and a reduction in the expression of biofilm-related genes.
