Pseudomonas aeruginosa detachment from surfaces via a self-made small molecule

通过自制小分子从表面去除铜绿假单胞菌

阅读:5
作者:Robert J Scheffler, Yuki Sugimoto, Benjamin P Bratton, Courtney K Ellison, Matthias D Koch, Mohamed S Donia, Zemer Gitai

Abstract

Pseudomonas aeruginosa is a significant threat in both healthcare and industrial biofouling. Surface attachment of P. aeruginosa is particularly problematic as surface association induces virulence and is necessary for the ensuing process of biofilm formation, which hampers antibiotic treatments. Previous efforts have searched for dispersal agents of mature biofilm collectives, but there are no known factors that specifically disperse individual surface-attached P. aeruginosa. In this study, we develop a quantitative single-cell surface-dispersal assay and use it to show that P. aeruginosa itself produces factors that can stimulate its dispersal. Through bioactivity-guided fractionation, mass spectrometry, and nuclear magnetic resonance, we elucidated the structure of one such factor, 2-methyl-4-hydroxyquinoline (MHQ). MHQ is an alkyl quinolone with a previously unknown activity and is synthesized by the PqsABC enzymes. Pure MHQ is sufficient to disperse P. aeruginosa, but the dispersal activity of natural P. aeruginosa conditioned media requires additional factors. Whereas other alkyl quinolones have been shown to act as antibiotics or membrane depolarizers, MHQ lacks these activities and known antibiotics do not induce dispersal. In contrast, we show that MHQ inhibits the activity of Type IV Pili (TFP) and that TFP targeting can explain its dispersal activity. Our work thus identifies single-cell surface dispersal as a new activity of P. aeruginosa-produced small molecules, characterizes MHQ as a promising dispersal agent, and establishes TFP inhibition as a viable mechanism for P. aeruginosa dispersal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。