Hypoxic Signaling Is Modulated by Calcium Channel, CaV1.3, in Androgen-Resistant Prostate Cancer

在雄激素抵抗性前列腺癌中,缺氧信号由钙通道 CaV1.3 调节

阅读:14
作者:Debbie O'Reilly, Paul J Buchanan

Background

Androgen deprivation therapy (ADT) remains a key treatment for advance prostate cancer (PCa), but resistance leads to terminal castrate-resistant prostate cancer (CRPC). Its development is linked to the emergence of a hypoxic tumor microenvironment and associated hypoxia inducible factor (HIF) signaling, which is known to be modulated by intracellular calcium. ADT is also known to upregulate store-operated calcium entry (SOCE) through voltage-gated calcium channel, CaV1.3. Consequently, the role of CaV1.3 in supporting hypoxic signaling and CRPC biology was explored. Materials: Androgen-sensitive PCa LNCaP cells were cultured with and without ADT bicalutamide, alongside ADT-resistant CRPC cells (LNCaP-ABL), either in normal or low oxygen (O2) (1%) conditions. HIF-1α, CaV1.3, and androgen receptor (AR) gene expression was measured by qPCR and protein expression with Western blot in the presence or absence of siCaV1.3. SOCE was determined through Fura-2AM fluorescence measurement. Cell proliferation was quantified by WST-1 assay and survival by colony formation.

Conclusion

This study highlights that CaV1.3 can modulated HIF signaling and impact on PCa tumor biology under hypoxia, but further investigation is required to ascertain if this mediated through SOCE or a noncanonical mechanism.

Results

CaV1.3 expression was increased during ADT but not hypoxia, correlating with an associated increase in SOCE. HIF-1α expression was upregulated by ADT under normal O2 conditions and increased during hypoxia across all cells but with a higher fold change in early ADT-resistant and CRPC cells. Under hypoxic conditions CaV1.3 small interfering RNA resulted in a significant reduction in HIF-1α expression for ADT-sensitive cells but increased in CRPC. A similar pattern was also observed for AR expression. Cell survival was found significantly reduced by siCaV1.3 under hypoxic conditions for all cells, with and without ADT. Whereas cell proliferation under the same conditions was reduced in CRPC only.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。