Alterations in fatty acid utilization and an impaired antioxidant defense mechanism are early events in podocyte injury: a proteomic analysis

脂肪酸利用的改变和抗氧化防御机制受损是足细胞损伤的早期事件:蛋白质组学分析

阅读:10
作者:Corina Mayrhofer, Sigurd Krieger, Nicole Huttary, Martina Wei-Fen Chang, Johannes Grillari, Günter Allmaier, Dontscho Kerjaschki

Abstract

Ultrastructural alterations of podocytes are closely associated with loss of glomerular filtration function. In the present study, we explored changes at the proteome level that paralleled the disturbances of podocyte architecture in the early stages of puromycin aminonucleoside (PA) nephrosis in vivo. Using two-dimensional fluorescence difference gel electrophoresis and vacuum matrix-assisted laser desorption/ionization mass spectrometry combined with postsource decay fragment ion analysis and high-energy collision-induced dissociation tandem mass spectrometry, 23 differentially expressed protein spots, corresponding to 16 glomerular proteins that are involved in various cellular functions, were unambiguously identified, and a subset was corroborated by Western blot analysis. The majority of these proteins were primarily related to fatty acid metabolism and redox regulation. Key enzymes of the mitochondrial beta-oxidation pathway and antioxidant enzymes were consistently down-regulated in PA nephrosis. These changes were paralleled by increased expression levels of CD36. PA treatment of murine podocytes in culture resembled these specific protein changes in vitro. In this cell system, the modulatory effects of albumin-bound fatty acids on the expression levels of Mn-superoxide dismutase in response to PA were demonstrated as well. Taken together, these results indicate that a disrupted fatty acid metabolism in concert with an impaired antioxidant defense mechanism in podocytes may play a role in the early stages of PA-induced lesions in podocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。