Power analysis to detect treatment effects in longitudinal clinical trials for Alzheimer's disease

通过功效分析检测阿尔茨海默病纵向临床试验中的治疗效果

阅读:6
作者:Zhiyue Huang, Graciela Muniz-Terrera, Brian D M Tom

Conclusion

Consideration of the multivariate/joint distribution of components' scores rather than the distribution of a single composite score when designing clinical trials can lead to an increase in power and reduced sample sizes for detecting treatment effects in clinical trials for early AD.

Methods

Under the assumption that transformed versions of the Mini-Mental State Examination, the Clinical Dementia Rating Scale-Sum of Boxes, and the Alzheimer's Disease Assessment Scale-Cognitive Subscale tests'/components' scores are from a multivariate linear mixed-effects model, we calculated the sample sizes required to detect treatment effects on the annual rates of change in these three components in clinical trials for participants with mild cognitive impairment.

Results

Our results suggest that a large number of participants would be required to detect a clinically meaningful treatment effect in a population with preclinical or prodromal Alzheimer's disease. We found that the transformed Mini-Mental State Examination is more sensitive for detecting treatment effects in early AD than the transformed Clinical Dementia Rating Scale-Sum of Boxes and Alzheimer's Disease Assessment Scale-Cognitive Subscale. The use of optimal weights to construct powerful test statistics or sensitive composite scores/endpoints can reduce the required sample sizes needed for clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。