Analysis of the minimal specificity of caspase-2 and identification of Ac-VDTTD-AFC as a caspase-2-selective peptide substrate

caspase-2 最小特异性分析及 Ac-VDTTD-AFC 作为 caspase-2 选择性肽底物的鉴定

阅读:6
作者:Tanja Kitevska, Sarah J Roberts, Delara Pantaki-Eimany, Sarah E Boyd, Fiona L Scott, Christine J Hawkins

Abstract

Caspase-2 is an evolutionarily conserved but enigmatic protease whose biological role remains poorly understood. To date, research into the functions of caspase-2 has been hampered by an absence of reagents that can distinguish its activity from that of the downstream apoptotic caspase, caspase-3. Identification of protein substrates of caspase-2 that are efficiently cleaved within cells may also provide clues to the role of this protease. We used a yeast-based transcriptional reporter system to define the minimal substrate specificity of caspase-2. The resulting profile enabled the identification of candidate novel caspase-2 substrates. Caspase-2 cleaved one of these proteins, the cancer-associated transcription factor Runx1, although with relatively low efficiency. A fluorogenic peptide was derived from the sequence most efficiently cleaved in the context of the transcriptional reporter. This peptide, Ac-VDTTD-AFC, was efficiently cleaved by purified caspase-2 and auto-activating caspase-2 in mammalian cells, and exhibited better selectivity for caspase-2 relative to caspase-3 than reagents that are currently available. We suggest that this reagent, used in parallel with the traditional caspase-3 substrate Ac-DEVD-AFC, will enable researchers to monitor caspase-2 activity in cell lysates and may assist in the determination of stimuli that activate caspase-2 in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。