The implication of serum HLA-G in angiogenesis of multiple myeloma

血清 HLA-G 在多发性骨髓瘤血管生成中的意义

阅读:6
作者:Chi Wang, Nai-Wen Su, Kate Hsu, Chen-Wei Kao, Ming-Chih Chang, Yi-Fang Chang, Ken-Hong Lim, Yi-Hao Chiang, Yu-Cheng Chang, Meng-Ta Sung, Hsueh-Hsia Wu, Caleb G Chen2

Background

Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM.

Conclusion

These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.

Methods

We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells.

Results

We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。