Phosphorylation state of tyrosine hydroxylase in the stalk-median eminence is decreased by progesterone in cycling female rats

孕酮降低雌性大鼠睾丸柄中部隆起处酪氨酸羟化酶的磷酸化状态

阅读:9
作者:Bin Liu, Lydia A Arbogast

Abstract

Progesterone has the capacity to suppress hypothalamic dopaminergic neuronal activity on proestrous afternoon and prolong or amplify the preovulatory prolactin surge in rats. In the present study, we examined enzyme activity and phosphorylation state of tyrosine hydroxylase (TH) in the stalk-median eminence of cycling female rats on proestrus and estrus and related these to circulating progesterone levels. Phospho-TH levels were evaluated by Western blot analysis. TH activity was determined from the rate of 3,4-dihydroxyphenylalanine (DOPA) accumulation. Phospho-TH levels at Ser-19, Ser-31, and Ser-40 were similar at 1100, 1300, and 1500 h on proestrus but declined at 1700, 1900, and 2200 h, coincident with rising serum progesterone levels. Similarly, DOPA accumulation was 30-50% lower at 1700, 1900, and 2200 h as compared with 1100-1500 h on proestrus. Ser-31 and Ser-40 phosphorylation states were increased by 1100 h on estrus to a level similar to 1100 h on proestrus, whereas DOPA accumulation was 30% greater on estrous as compared with proestrous morning. There were no significant differences among the several time points on proestrus and estrus with regard to TH protein or beta-tubulin levels. Exogenous progesterone administration (7.5 mg/kg, sc) before the preovulatory progesterone surge decreased TH activity and phospho-TH at Ser-19, Ser-31, and Ser-40, accompanied by premature increased serum prolactin. Our study suggests that decreased TH phosphorylation at Ser-19, Ser-31, and Ser-40 contributes to the decline in TH activity in the stalk-median eminence on proestrous afternoon and that progesterone may cause this initial cytoplasmic response of TH dephosphorylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。