EZH2 as a major histone methyltransferase in PDGF-BB-activated orbital fibroblast in the pathogenesis of Graves' ophthalmopathy

EZH2 作为 PDGF-BB 激活的眼眶成纤维细胞中的主要组蛋白甲基转移酶在 Graves 眼病的发病机制中起着重要作用

阅读:4
作者:Sopita Visamol, Tanapat Palaga, Preamjit Saonanon, Vannakorn Pruksakorn, Nattiya Hirankarn, P Martin van Hagen, Willem A Dik, Sita Virakul

Abstract

Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease which can lead to vision loss in severe cases. Currently, treatments of GO are not sufficiently effective, so novel therapeutic strategies are needed. As platelet-derived growth factor (PDGF)-BB induces several effector mechanisms in GO orbital fibroblasts including cytokine production and myofibroblast activation, this study aims to investigate the roles of histone lysine methyltransferases (HKMTs) in PDGF-BB-activated GO orbital fibroblasts by screening with HKMTs inhibitors library. From the total of twelve selective HKMT inhibitors in the library, EZH2, G9a and DOT1L inhibitors, DZNeP, BIX01294 and Pinometostat, respectively, prevented PDGF-BB-induced proliferation and hyaluronan production by GO orbital fibroblasts. However, only EZH2 inhibitor, DZNeP, significantly blocked pro-inflammatory cytokine production. For the HKMTs expression in GO orbital fibroblasts, PDGF-BB significantly and time-dependently induced EZH2, G9a and DOT1L mRNA expression. To confirm the role of EZH2 in PDGF-BB-induced orbital fibroblast activation, EZH2 silencing experiments revealed suppression of PDGF-BB-induced collagen type I and α-SMA expression along with decreasing histone H3 lysine 27 trimethylation (H3K27me3) level. In a more clinically relevant model than orbital fibroblast culture experiments, DZNeP treated GO orbital tissues significantly reduced pro-inflammatory cytokine production while slightly reduced ACTA2 mRNA expression. Our data is the first to demonstrate that among all HKMTs EZH2 dominantly involved in the expression of myofibroblast markers in PDGF-BB-activated orbital fibroblast from GO presumably via H3K27me3. Thus, EZH2 may represent a novel therapeutics target for GO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。