IL-33/ST2 axis mediates diesel exhaust particles-induced mast cell activation

IL-33/ST2 轴介导柴油机尾气颗粒诱导的肥大细胞活化

阅读:4
作者:Wun-Hao Cheng #, Ting-Li Zhuang #, Meng-Jung Lee, Chun-Liang Chou, Bing-Chang Chen, Han-Pin Kuo, Chih-Ming Weng

Background

Mast cells are implicated in the pathogenesis and severity of asthma in children and adults. The release of proinflammatory mediators and cytokines from activated mast cells (MC) is associated with Type 2 (T2) cell-skewed inflammation.

Conclusions

Airborne pollutants may activate MCs to produce IL-33 via the AhR/NF-κB pathway, leading to type 2 cytokines production and enhancing MC airway epithelium-shifted migration through the autocrine or paracrine IL-33/ST2 axis.

Methods

We obtained the airway tissues of Balb/c mice with or without intra-tracheal diesel exhaust particles (DEP) instillation to measure the extent of tryptase+ MCs infiltration and interleukin (IL)-33 expression. Cultured human mast cells (HMC-1) were stimulated with DEP to determine the role of aryl hydrocarbon receptor (AhR) in mediating the synthesis and release of IL-33 and type-2 cytokines.

Results

In the control animals, most of the MC accumulated in the submucosal vessels without expression of IL-33. Intra-tracheal DEP installation increased the number of IL-33+ MC infiltrating in the epithelial and sub-epithelial areas of mice. Human MC exposed to DEP upregulated mRNA and protein expression of IL-33. These effects were abolished by knockdown of expression of the AhR or AhR nuclear translocator (ARNT) by small interfering (si)RNA transfection. DEP also activated nuclear factor-kappa B (NF-κB) to facilitate nuclear translocation of the AhR. DEP increased MC migration and induced the synthesis and release of IL-4, IL-5, and IL-13 in MCs, and these effects were abolished by anti-ST2 antibodies. Conclusions: Airborne pollutants may activate MCs to produce IL-33 via the AhR/NF-κB pathway, leading to type 2 cytokines production and enhancing MC airway epithelium-shifted migration through the autocrine or paracrine IL-33/ST2 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。