A sequential mechanism for exosite-mediated factor IX activation by factor XIa

外位点介导因子 XIa 激活因子 IX 的顺序机制

阅读:4
作者:Yipeng Geng, Ingrid M Verhamme, Amanda Messer, Mao-fu Sun, Stephen B Smith, S Paul Bajaj, David Gailani

Abstract

During blood coagulation, the protease factor XIa (fXIa) activates factor IX (fIX). We describe a new mechanism for this process. FIX is cleaved initially after Arg(145) to form fIXα, and then after Arg(180) to form the protease fIXaβ. FIXα is released from fXIa, and must rebind for cleavage after Arg(180) to occur. Catalytic efficiency of cleavage after Arg(180) is 7-fold greater than for cleavage after Arg(145), limiting fIXα accumulation. FXIa contains four apple domains (A1-A4) and a catalytic domain. Exosite(s) on fXIa are required for fIX binding, however, there is lack of consensus on their location(s), with sites on the A2, A3, and catalytic domains described. Replacing the A3 domain with the prekallikrein A3 domain increases K(m) for fIX cleavage after Arg(145) and Arg(180) 25- and ≥ 90-fold, respectively, and markedly decreases k(cat) for cleavage after Arg(180). Similar results were obtained with the isolated fXIa catalytic domain, or fXIa in the absence of Ca(2+). Forms of fXIa lacking the A3 domain exhibit 15-fold lower catalytic efficiency for cleavage after Arg(180) than for cleavage after Arg(145), resulting in fIXα accumulation. Replacing the A2 domain does not affect fIX activation. The results demonstrate that fXIa activates fIX by an exosite- and Ca(2+)-mediated release-rebind mechanism in which efficiency of the second cleavage is enhanced by conformational changes resulting from the first cleavage. Initial binding of fIX and fIXα requires an exosite on the fXIa A3 domain, but not the A2 or catalytic domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。