Endothelial derived factors inhibit anoikis of head and neck cancer stem cells

内皮衍生因子抑制头颈癌干细胞的凋亡

阅读:16
作者:Marcia S Campos, Kathleen G Neiva, Kristy A Meyers, Sudha Krishnamurthy, Jacques E Nör

Abstract

Recent evidence demonstrated that cancer stem cells reside in close proximity to blood vessels in human head and neck squamous cell carcinomas (HNSCC). These findings suggest the existence of a supporting perivascular niche for cancer stem cells. The purpose of this study was to evaluate the effect of endothelial cell-secreted factors on the behavior of head and neck cancer stem-like cells (HNCSC). HNCSC were identified by sorting UM-SCC-22A (cell line derived from a primary squamous cell carcinoma of the oropharynx) and UM-SCC-22B (derived from the metastatic lymph node of the same patient) for CD44 expression and ALDH (aldehyde dehydrogenase) activity. HNCSC (ALDH+CD44+) and control (ALDH-CD44-) cells were cultured in ultra-low attachment plates in presence of conditioned medium from primary human endothelial cells. ALDH+CD44+ generated more orospheres than control cells when cultured in suspension. The growth factor milieu secreted by endothelial cells protected HNCSC against anoikis. Mechanistic studies revealed that endothelial cell-secreted vascular endothelial growth factor (VEGF) induces proliferation of HNCSC derived from primary UM-SCC-22A, but not from the metastatic UM-SCC-22B. Likewise, blockade of VEGF abrogated endothelial cell-induced Akt phosphorylation in HNCSC derived from UM-SCC-22A while it had a modest effect in Akt phosphorylation in HNCSC from UM-SCC-22B. This study revealed that endothelial cells initiate a crosstalk that protect head and neck cancer stem cells against anoikis, and suggest that therapeutic interference with this crosstalk might be beneficial for patients with head and neck cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。