Enhanced biochemical, microbial, and ultrastructural attributes of reduced-fat labneh through innovative microalgae integration

通过创新的微藻整合增强低脂酸奶的生化、微生物和超微结构属性

阅读:9
作者:Mahmoud M Refaey, Fatimah O Al-Otibi, Ayman Y El-Khateeb, Yosra A Helmy, WesamEldin I A Saber, Samar A Zalma

Abstract

Reduced-fat labneh, while offering health benefits, often presents a challenge due to its diminished nutritional profile compared to full-fat varieties. Microalgae, such as Spirulina platensis and Chlorella vulgaris, are increasingly explored for their potential to fortify foods with essential nutrients. This study innovatively investigates the use of these microalgae to enhance the quality of reduced-fat labneh. The effect of incorporating different concentrations of both microalgae was investigated at different concentrations (0.25, 0.5, and 1%) on nutritional profile (including total solids, fat, protein, carbohydrates, essential amino acids, unsaturated fatty acids, pigments, and phenolic compounds), antioxidant activity, texture, sensory attributes, and viability of the starter culture. The findings revealed that 0.25 and 0.5% concentrations of both microalgae positively influenced the sensory characteristics of the labneh and significantly enhanced its nutritional profile. However, a 1% concentration negatively impacted sensory qualities. Chlorella vulgaris enrichment resulted in higher pH values but compromised texture attributes. Importantly, both microalgae varieties enhanced the viability of the starter culture during 21 days of refrigerated storage. The scanning electron microscope images provide visual evidence of the microstructural changes in labneh with varying concentrations of microalgae and over different storage periods. This research establishes the optimal concentrations for individual microalgae enrichment in reduced-fat labneh, offering valuable insights into their potential to improve both nutritional and sensory aspects. However, it's important to mention that while both microalgae have similar effects, they might differ in their specific impacts due to their unique nutritional profiles and physical properties. Therefore, further investigations could explore optimizing a microalgae mixture and its potential application in functional food development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。