A bioengineering method for modeling alveolar Rhabdomyosarcoma and assessing chemotherapy responses

一种用于模拟肺泡横纹肌肉瘤并评估化疗反应的生物工程方法

阅读:9
作者:Evan Stefanek, Ehsan Samiei, Mahboubeh Kavoosi, Mohammad Esmaeillou, Kiarash Roustai Geraylow, Arya Emami, Milad Ashrafizadeh, David Perrin, Joseph W Gordon, Mohsen Akbari, Saeid Ghavami4

Abstract

Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignant tumor. Treatment of RMS usually includes primary tumor resection along with systemic chemotherapy. Two-dimensional (2D) cell culture systems and animal models have been extensively used for investigating the potential efficacy of new RMS treatments. However, RMS cells behave differently in 2D culture than in vivo, which has recently inspired the adoption of three-dimensional (3D) culture environments. In the current paper, we will describe the detailed methodology we have developed for fabricating a 3D engineered model to study alveolar RMS (ARMS) in vitro. This model consists of a thermally cross-linked collagen disk laden with RMS cells that mimics the structural and bio-chemical aspects of the tumor extracellular matrix (ECM). This process is highly reproducible and produces a 3D engineered model that can be used to analyze the cytotoxicity and autophagy induction of drugs on ARMS cells. The most improtant bullet points are as following:•We fabricated 3D model of ARMS.•The current ARMS 3D model can be used for screening of chemotherapy drugs.•We developed methods to detect apoptosis and autophagy in ARMS 3D model to detect the mechansims of chemotherapy agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。