Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa

物理效应对铜绿假单胞菌群集运动能力的影响

阅读:6
作者:Alexander Yang, Wai Shing Tang, Tieyan Si, Jay X Tang

Abstract

Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。