PCNA and Rnh1 independently participate in the protection of mitochondrial genome against UV-induced mutagenesis in yeast cells

PCNA和Rnh1独立参与保护酵母细胞线粒体基因组免受紫外线诱变

阅读:5
作者:Martyna Latoszek, Katarzyna Baginska-Drabiuk, Ewa Sledziewska-Gojska, Aneta Kaniak-Golik

Abstract

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria. We show that, contrary to expectations, yeast PCNA is mitochondrially localized and, upon genotoxic stress, ubiquitinated PCNA can be detected in purified mitochondria. Moreover, the substitution K164R in PCNA leads to an increase of UV-induced point mutations in mtDNA. This UV-dependent effect is highly enhanced in cells in which the Mec1/Rad53/Dun1 checkpoint-dependent deoxynucleotide triphosphate (dNTP) increase in response to DNA damage is blocked and RNase H1 is lacking, suggesting that PCNA plays a role in a replication damage bypass pathway dealing with lesions in multiple ribonucleotides embedded in mtDNA. In addition, our analysis indicates that K164R in PCNA restricts mostly the anti-mutagenic Polη activity on UV-damaged mtDNA, whereas the inhibitory effect on Polζ's activity is only partial. We also show for the first time that in conditions of dNTP depletion yeast Rnh1 neutralizes deleterious effects of ribonucleotides for mtDNA replication, thereby preventing the enhanced instability of rho+ mitochondrial genomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。