When every particle matters: A QuEChERS approach to extract microplastics from environmental samples

当每个颗粒都很重要时:采用 QuEChERS 方法从环境样品中提取微塑料

阅读:4
作者:Kristina Enders, Robin Lenz, Juliana A Ivar do Sul, Alexander S Tagg, Matthias Labrenz

Abstract

The identification of microplastics (MP), especially small (<500 μm) MP, using automated surface-chemistry approaches requires the best possible reduction of natural particles whilst preserving the integrity of the targeted synthetic polymers particles. In general, both natural and synthetic particles can be highly diverse physically and chemically and MP extraction, particularly from complex matrices such as sediments, sludge and soils, requires efficient method pipelines. Our paper presents a universal framework of modular protocols (presented in a decision tree) that fulfil predefined user requirements (QuEChERS: Quick, Easy, Cheap, Effective, Rugged, Safe) as well as providing best practises for reasonable MP working conditions within a standard laboratory. New procedures and technical innovations for density separation of particle-rich matrices are presented, such as a spiral conveyor developed and validated for MP recovery. In sharing such best-practice protocols, we aim to help in the push towards MP quantification method standardisation. •Publication of protocols of an entire MP extraction (10 μm - 5 mm) pipeline for particle-based analysis of various environmental matrices•Modularity: Optimised quantitative sample preparation adapted to particle sizes and sample matrices•New protocols and technical innovations (e.g. spiral conveyor) optimise MP extraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。