Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals

诱导型一氧化氮合酶在小鼠预防慢性沙眼衣原体泌尿生殖系统疾病中的作用及氧自由基对其的调节

阅读:6
作者:K H Ramsey, I M Sigar, S V Rana, J Gupta, S M Holland, G I Byrne

Abstract

It has been previously reported that although inducible nitric oxide synthase (iNOS) gene knockout (NOS2(-/-)) mice resolve Chlamydia trachomatis genital infection, the production of reactive nitrogen species (RNS) via iNOS protects a significant proportion of mice from hydrosalpinx formation and infertility. We now report that higher in vivo RNS production correlates with mouse strain-related innate resistance to hydrosalpinx formation. We also show that mice with a deletion of a key component of phagocyte NADPH oxidase (p47(phox-/-)) resolve infection, produce greater amounts of RNS in vivo, and sustain lower rates of hydrosalpinx formation than both wild-type (WT) NOS2(+/+) and NOS2(-/-) controls. When we induced an in vivo chemical block in iNOS activity in p47(phox-/-) mice using N(G)-monomethyl-L-arginine (L-NMMA), a large proportion of these mice eventually succumbed to opportunistic infections, but not before they resolved their chlamydial infections. Interestingly, when compared to WT and untreated p47(phox-/-) controls, L-NMMA-treated p47(phox-/-) mice resolved their infections more rapidly. However, L-NMMA-treated p47(phox-/-) mice lost resistance to chronic chlamydial disease, as evidenced by an increased rate of hydrosalpinx formation that was comparable to that for NOS2(-/-) mice. We conclude that phagocyte oxidase-derived reactive oxygen species (ROS) regulate RNS during chlamydial urogenital infection in the mouse. We further conclude that while neither phagocyte oxidase-derived ROS nor iNOS-derived RNS are essential for resolution of infection, RNS protect from chronic chlamydial disease in this model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。