Methods
CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM:C-methyltransferase, and NADPH-dependent CDP-3-C-methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3-C-methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3-C-methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3-C-methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C-methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3-C-methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus.
