LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1

LNA/DNA 嵌合寡聚体模拟针对 HIV-1 的 TAR RNA 元件的 RNA 适体

阅读:6
作者:Fabien Darfeuille, Jens Bo Hansen, Henrik Orum, Carmelo Di Primo, Jean-Jacques Toulmé

Abstract

One of the major limitations of the use of phosphodiester oligonucleotides in cells is their rapid degradation by nucleases. To date, several chemical modifications have been employed to overcome this issue but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this work conformationally restricted nucleotides, locked nucleic acid (LNA), were investigated to design nuclease resistant aptamers targeted against the HIV-1 TAR RNA. LNA/DNA chimeras were synthesized from a shortened version of the hairpin RNA aptamer identified by in vitro selection against TAR. The results indicate that these modifications confer good protection towards nuclease digestion. Electrophoretic mobility shift assays, thermal denaturation monitored by UV-spectroscopy and surface plasmon resonance experiments identified LNA/DNA TAR ligands that bind to TAR with a dissociation constant in the low nanomolar range as the parent RNA aptamer. The crucial G, A residues that close the aptamer loop remain a key structural determinant for stable LNA/DNA chimera-TAR complexes. This work provides evidence that LNA modifications alternated with DNA can generate stable structured RNA mimics for interacting with folded RNA targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。