Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome

芒柄花素通过抑制 NLRP3 炎症小体改善多囊卵巢综合征

阅读:11
作者:Zhuo Liu, Rui-Han Wang, Ke-Hua Wang

Background

Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by multiple clinical features, including anovulation, hyperandrogenism, and polycystic ovarian morphology, leading to infertility. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects. However, whether FMN is effective in the treatment of PCOS remains unknown. This study aims to explore the effects and the possible mechanisms of FMN in PCOS.

Conclusion

These findings demonstrated that FMN could alleviate PCOS by repressing inflammation, apoptosis, as well as oxidative stress in vivo and in vitro via inhibition of the NLRP3 inflammasome. Highlights: 1. FMN improved PCOS symptoms. 2. FMN alleviated cell apoptosis, inflammation and oxidative stress in PCOS. 3. FMN inhibited the activation of NLRP3 inflammasome in PCOS.

Methods

Dehydroepiandrosterone (DHEA)-induced PCOS rats and dihydrotestosterone (DHT)-induced PCOS cell models were established. Fifty rats were randomly assigned into five groups of 10 rats each: Control, PCOS, PCOS + FMN (15 mg/kg), PCOS + FMN (30 mg/kg), and PCOS + FMN (60 mg/kg). Fasting blood glucose, insulin, luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol were detected in DHEA-induced PCOS rats. Ovarian histological changes and apoptosis were evaluated utilizing H&E and TUNEL staining. Subsequently, the effects of FMN on oxidative stress and inflammatory responses in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model were explored. Besides, the function of FMN on cell viability and apoptosis in DHT-induced PCOS cell model were explored by using CCK-8 assay and flow cytometry. Protein expression was detected via western blot and immunofluorescence staining in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model.

Results

FMN alleviated PCOS symptoms and reduced inflammation, cell apoptosis, and oxidative stress in DHEA-induced PCOS rats and DHT-induced KGN cells. Additionally, FMN suppressed NLRP3 inflammasome activation in both models. In the DHT-induced PCOS cell model, nigericin (a activator of NLRP3) reversed the functions of FMN on inflammation, apoptosis, and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。