A CYP26B1 polymorphism enhances retinoic acid catabolism and may aggravate atherosclerosis

CYP26B1 多态性增强视黄酸分解代谢并可能加重动脉粥样硬化

阅读:4
作者:Olesya Krivospitskaya, Ali Ateia Elmabsout, Eva Sundman, Leif A Söderström, Olga Ovchinnikova, Andreas C Gidlöf, Nikolai Scherbak, Giuseppe Danilo Norata, Ann Samnegård, Hans Törmä, Samy M Abdel-Halim, Jan-Håkan Jansson, Per Eriksson, Allan Sirsjö, Peder S Olofsson

Abstract

All-trans retinoic acid, controlled by cytochrome P450, family 26 (CYP26) enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26 subfamily B, polypeptide 1 (CYP26B1) in atherosclerosis and the effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries, and CYP26B1 and the macrophage marker CD68 were colocalized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic arteries than in normal arteries. Databases were queried for nonsynonymous CYP26B1 single nucleotide polymorphisms (SNPs) and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophagelike cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions, as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。