Inhibition of human immunodeficiency virus replication by cell membrane-crossing oligomers

跨细胞膜低聚物对人类免疫缺陷病毒复制的抑制

阅读:4
作者:Wilfried Posch, Stefan Piper, Thomas Lindhorst, Birgit Werner, Adam Fletcher, Holger Bock, Cornelia Lass-Flörl, Heribert Stoiber, Doris Wilflingseder

Abstract

Although rapidly becoming a valuable tool for gene silencing, regulation or editing in vitro, the direct transfer of small interfering ribonucleic acids (siRNAs) into cells is still an unsolved problem for in vivo applications. For the first time, we show that specific modifications of antisense oligomers allow autonomous passage into cell lines and primary cells without further adjuvant or coupling to a cell-penetrating peptide. For this reason, we termed the specifically modified oligonucleotides "cell membrane-crossing oligomers" (CMCOs). CMCOs targeted to various conserved regions of human immunodeficiency virus (HIV)-1 were tested and compared with nontargeting CMCOs. Analyses of uninfected and infected cells incubated with labeled CMCOs revealed that the compounds were enriched in infected cells and some of the tested CMCOs exhibited a potent antiviral effect. Finally, the CMCOs did not exert any cytotoxicity and did not inhibit proliferation of the cells. In vitro, our CMCOs are promising candidates as biologically active anti-HIV reagents for future in vivo applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。