The Effect of (-)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure

(-)-表没食子儿茶素-3-没食子酸酯对淀粉样β蛋白二级结构的影响

阅读:4
作者:Atanu Acharya, Julia Stockmann, Léon Beyer, Till Rudack, Andreas Nabers, James C Gumbart, Klaus Gerwert, Victor S Batista

Abstract

Amyloid-β (Aβ) is a macromolecular structure of great interest because its misfolding and aggregation, along with changes in the secondary structure, have been correlated with its toxicity in various neurodegenerative diseases. Small drug-like molecules can modulate the amyloid secondary structure and therefore have raised significant interest in applications to active and passive therapies targeting amyloids. In this study, we investigate the interactions of epigallocatechin-3-gallate (EGCG), found in green tea, with Aβ polypeptides, using a combination of in vitro immuno-infrared sensor measurements, docking, molecular dynamics simulations, and ab initio calculations. We find that the interactions of EGCG are dominated by only a few residues in the fibrils, including hydrophobic π-π interactions with aromatic rings of side chains and hydrophilic interactions with the backbone of Aβ, as confirmed by extended (1-μs-long) molecular dynamics simulations. Immuno-infrared sensor data are consistent with degradation of Aβ fibril induced by EGCG and inhibition of Aβ fibril and oligomer formation, as manifested by the recovery of the amide-I band of monomeric Aβ, which is red-shifted by 26 cm-1 when compared to the amide-I band of the fibrillar form. The shift is rationalized by computations of the infrared spectra of Aβ42 model structures, suggesting that the conformational change involves interchain hydrogen bonds in the amyloid fibrils that are broken upon binding of EGCG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。