Empirical evaluations of analytical issues arising from predicting HLA alleles using multiple SNPs

使用多个 SNP 预测 HLA 等位基因的分析问题的实证评估

阅读:4
作者:Xinyi Cindy Zhang, Shuying Sue Li, Hongwei Wang, John A Hansen, Lue Ping Zhao

Background

Numerous immune-mediated diseases have been associated with the class I and II HLA genes located within the major histocompatibility complex (MHC) consisting of highly polymorphic alleles encoded by the HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 loci. Genotyping for HLA alleles is complex and relatively expensive. Recent studies have demonstrated the feasibility of predicting HLA alleles, using MHC SNPs inside and outside of HLA that are typically included in SNP arrays and are commonly available in genome-wide association studies (GWAS). We have recently described a novel method that is complementary to the previous

Conclusions

The empirical explorations reported here provide further evidence in support of the application of this approach for predicting HLA alleles with GWAS-derived SNP data. Utilizing all available samples, we have built "state of the art" predictive models for HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1. The HLA allele predictive models, along with the program used to carry out the prediction, are available on our website.

Results

Applying this new methodology to three large independent study cohorts, we have evaluated the performance of the predictive models in ethnically diverse populations. Specifically, we have found that utilizing imputed in addition to genotyped SNPs generally yields comparable if not better performance in prediction accuracies. Our evaluation also supports the idea that predictive models trained on one population are transferable to other populations of the same ethnicity. Further, when the training set includes multi-ethnic populations, the resulting models are reliable and perform well for the same subpopulations across all HLA genes. In contrast, the predictive models built from single ethnic populations have superior performance within the same ethnic population, but are not likely to perform well in other ethnic populations. Conclusions: The empirical explorations reported here provide further evidence in support of the application of this approach for predicting HLA alleles with GWAS-derived SNP data. Utilizing all available samples, we have built "state of the art" predictive models for HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1. The HLA allele predictive models, along with the program used to carry out the prediction, are available on our website.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。