The DNA binding and 3'-end preferential activity of human tyrosyl-DNA phosphodiesterase

人类酪氨酰-DNA磷酸二酯酶的DNA结合和3'端优先活性

阅读:7
作者:Thomas S Dexheimer, Andrew G Stephen, Matthew J Fivash, Robert J Fisher, Yves Pommier

Abstract

Human tyrosyl-DNA phosphodiesterase (Tdp1) processes 3'-blocking lesions, predominantly 3'-phosphotyrosyl bonds resulting from the trapping of topoisomerase I (Top1) cleavage complexes. The controversial ability of yeast Tdp1 to hydrolyze 5'-phosphotyrosyl linkage between topoisomerase II (Top2) and DNA raises the question whether human Tdp1 possesses 5'-end processing activity. Here we characterize the end-binding and cleavage preference of human Tdp1 using single-stranded 5'- and 3'-fluorescein-labeled oligonucleotides. We establish 3'-fluorescein as an efficient surrogate substrate for human Tdp1, provided it is attached to the DNA by a phosphodiester (but not a phosphorothioate) linkage. We demonstrate that human Tdp1 lacks the ability to hydrolyze a phosphodiester linked 5'-fluorescein. Using both fluorescence anisotropy and time-resolved fluorescence quenching techniques, we also show the preferential binding of human Tdp1 to the 3'-end. However, DNA binding competition experiments indicate that human Tdp1 binding is dependent on DNA length rather than number of DNA ends. Lastly, using surface plasmon resonance, we show that human Tdp1 selectively binds the 3'-end of DNA. Together, our results suggest human Tdp1 may act using a scanning mechanism, in which Tdp1 bind non-specifically upstream of a 3'-blocking lesion and is preferentially stabilized at 3'-DNA ends corresponding to its site of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。