In-situ Raman spectroscopy of amorphous calcium phosphate to crystalline hydroxyapatite transformation

无定形磷酸钙向结晶羟基磷灰石转变的原位拉曼光谱

阅读:8
作者:Jessica A Stammeier, Bettina Purgstaller, Dorothee Hippler, Vasileios Mavromatis, Martin Dietzel

Abstract

Amorphous calcium phosphate (Ca3(PO4)2xnH2O; n = 3-4.5; ACP) is a precursor phase of the mineral hydroxyapatite (Ca5(PO4)3(OH); HAP) that in natural settings occurs during both authigenic and biogenic mineral formation. In aqueous solutions ACP transforms rapidly to the crystalline phase. The transformation rate is highly dependent on the prevailing physico-chemical conditions, most likely on: Ca & PO4 concentration, pH and temperature. In this study, we conducted a calcium phosphate precipitation experiment at 20 °C and pH 9.2, in order to study the temporal evolution of the phosphate mineralogy. We monitored and assessed the transformation process of ACP to crystalline HAP using highly time-resolved in-situ Raman spectroscopy at 100 spectra per hour, in combination with solution chemistry and XRD data. Transformation of ACP to crystalline HAP occurred within 18 h, as it is illustrated in a clear peak shift in Raman spectra from 950 cm-1 to 960 cm-1 as well as in a sharpening of the 960 cm-1 peak. The advantages of this method are: •In-situ Raman spectroscopy facilitates quasi - continuous monitoring of phase transitions.•It is an easy to handle and non-invasive method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。