Dual bio-active factors with adhesion function modified electrospun fibrous scaffold for skin wound and infections therapeutics

具有粘附功能的双重生物活性因子改性电纺纤维支架用于皮肤伤口和感染治疗

阅读:5
作者:Jianhang Jiao, Chuangang Peng, Chen Li, Zhiping Qi, Jing Zhan, Su Pan

Abstract

Electrospun fibrous scaffolds combined with bioactive factors can display impressive performance as an ideal wound dressing, since they can mimic the composition and physicochemical properties of the extracellular matrix (ECM). The aim of this study was to fabricate a new composite biomaterial (IGF1-DA and Os-DA-modified PLGA electrospun fibrous scaffold) for wound healing, using a rat model for experimental evaluation. A small pentapeptide tag composed of DA-Lys-DA-Lys-DA residues was introduced into insulin-like growth factor 1 (IGF1) and the antimicrobial peptide Os to prepare IGF1 and Os modified with 3,4-dihydroxyphenylalanine (DA) (IGF1-DA and Os-DA). The designed chimeric growth factor and antimicrobial peptide could successfully anchor to PLGA electrospun fibrous scaffolds, and the growth factor and antimicrobial peptide could be controllably released from the electrospun fibrous scaffolds. The results showed that the IGF1-DA and Os-DA-modified PLGA electrospun fibrous scaffolds (PLGA/Os-DA/IGF1-DA) exhibited high hydrophilicity and antimicrobial activity; moreover, the porous network of the scaffolds was similar to that of the natural ECM, which can provide a favourable environment for BALB/C 3T3 cells growth. The in vivo application of PLGA/Os-DA/IGF1-DA electrospun fibrous scaffolds in rat skin wounds resulted in improved wound recovery and tissue regeneration rate. The experimental results indicated that the IGF1-DA and Os-DA could effectively bind to PLGA electrospun fibrous scaffolds, promote wound healing and prevent infection in rats, thereby suggesting that PLGA/Os-DA/IGF1-DA electrospun fibrous scaffolds have a wide application value in the field of skin wound repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。