A real-time 31P-NMR-based approach for the assessment of glycerol kinase catalyzed monophosphorylations

基于实时 31P-NMR 的方法评估甘油激酶催化的单磷酸化

阅读:5
作者:Wendy Escobedo-Hinojosa, Julian L Wissner, Bernhard Hauer

Abstract

Phosphorous-NMR is scarcely employed to evaluate enzyme kinetics of kinase driven monophosphorylations, despite of being a powerful and reliable tool to undoubtedly detect the actual phosphoryl transfer to the targeted substrate. Another advantage is that an external supplementation source of the NMR active isotope is not required, since 31P is highly abundant in nature. Glycerol kinase (GlpK) from E. coli is an exemplary ATP-dependent kinase/phosphotransferase model to illustrate the value and usefulness of a 31P-NMR-based approach to assess the enzymatically driven monophosphorylation of glycerol. Moreover, the described approach offers an alternative to the indirect coupled glycerol kinase enzyme assays. Herein, we provided a real time 31P-NMR-based method customized for the direct assessment of the glycerol kinase enzyme activity.•Real-time detection for phosphoryl group dynamics in the GlpK driven reaction•Direct assessment of product formation (glycerol-monophosphate)•Parallel determination of cosubstrate (ATP) consumption and coproduct (ADP) generation•Method validation was performed via 31P-NMR for each phosphorylated molecule involved in the reaction in order to assist in the molecular assignments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。