Microbubble-mediated delivery of human adenoviruses does not elicit innate and adaptive immunity response in an immunocompetent mouse model of prostate cancer

微泡介导的人类腺病毒递送不会在免疫功能正常的前列腺癌小鼠模型中引发先天性和适应性免疫反应

阅读:9
作者:Flavia De Carlo, Litty Thomas, Bell Brooke, Elliot T Varney, Rounak Nande, Olivia Boskovic, Gailen D Marshall, Pier Paolo Claudio, Candace M Howard

Background

Gene transfer to malignant sites using human adenoviruses (hAds) has been limited because of their immunogenic nature and host specificity. Murine cells often lack some of the receptors needed for hAds attachment, thus murine cells are generally non-permissive for human adenoviral infection and replication, which limits translational studies.

Conclusions

This study brings us a step closer to demonstrating the feasibility of murine cancer models to investigate the clinical translation of image guided site-specific adenoviral gene therapy mediated by ultrasound-targeted microbubble destruction.

Methods

We have developed a gene transfer method that uses a combination of lipid-encapsulated perfluorocarbon microbubbles and ultrasound to protect and deliver hAds to a target tissue, bypassing the requirement of specific receptors.

Results

In an in vitro model, we showed that murine TRAMP-C2 and human DU145 prostate cancer cells display a comparable expression pattern of receptors involved in hAds adhesion and internalization. We also demonstrated that murine and human cells showed a dose-dependent increase in the percentage of cells transduced by hAd-GFP (green fluorescent protein) after 24 h and that GFP transgene was efficiently expressed at 48 and 72 h post-transduction. To assess if our image-guided delivery system could effectively protect the hAds from the immune system in vivo, we injected healthy immunocompetent mice (C57BL/6) or mice bearing a syngeneic prostate tumor (TRAMP-C2) with hAd-GFP/MB complexes. Notably, we did not observe activation of innate (TNF-α and IL-6 cytokines), or adaptive immune response (neutralizing antibodies, INF-γ+ CD8+ T cells). Conclusions: This study brings us a step closer to demonstrating the feasibility of murine cancer models to investigate the clinical translation of image guided site-specific adenoviral gene therapy mediated by ultrasound-targeted microbubble destruction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。