3D Imaging of Striatal Transplants in a Small Animal Model of Huntington's Disease

亨廷顿氏病小动物模型中纹状体移植的 3D 成像

阅读:6
作者:Elisabeth Schültke, Bernd R Pinzer, Marco Stampanoni, Laura Harsan, Mátè Döbrössy

Abstract

High-resolution imaging in small animal models of neurologic disease is a technical challenge. In a pilot project, we have explored a non-destructive synchrotron imaging technique for the 3D visualization of intracerebral tissue transplants in a well-established small animal model of Huntington's disease. Four adult female Sprague Dawley rats each received injections of 0.12 M quinolinic acid (QA) into two target positions in the left striatum, thus creating unilateral left-sided striatal lesions similar to those frequently seen in patients suffering from Huntington's disease. One week after lesioning, the animals received transplants prepared from whole ganglionic eminences (wGEs) obtained from 13- to 14-day-old rat embryos. Of the four lesioned animals, three received transplants of GNP-loaded cells and one animal received a transplant of naïve cells, serving as control. Post-mortem synchrotron-based microCT was used to obtain images of the neurotransplants. The images obtained of GNP-loaded tissue transplants at the synchrotron corresponded in size and shape to the histological images of transplants developed from naïve cells. Thus, we conclude that non-destructive synchrotron imaging techniques such as phase-contrast imaging are suitable to obtain high-resolution images of GNP-loaded tissue transplants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。