Investigation of chitosan-g-PEG grafted nanoparticles as a half-life enhancer carrier for tissue plasminogen activator delivery

壳聚糖-g-PEG 接枝纳米粒子作为组织纤溶酶原激活剂递送半衰期增强剂载体的研究

阅读:4
作者:Arezoo Khosravi, Hadi Baharifar, Mohamad Hasan Darvishi, Ali Akbar Karimi Zarchi

Abstract

Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half-life is low (4-6 min) and its administration needs a prolonged continuous infusion. Improving tPA half-life could reduce enzyme dosage and enhance patient compliance. Nano-carries could be used as delivery systems for the protection of enzymes physically, enhancing half-life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS-g-PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles' size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half-life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half-life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p-value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS-g-PEG/tPA could increase enzyme half-life during the time and could be used as a non-toxic candidate delivery system for tPA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。