Experimental capture of miRNA targetomes: disease-specific 3'UTR library-based miRNA targetomics for Parkinson's disease

miRNA 靶标组的实验捕获:基于疾病特异性 3'UTR 文库的帕金森病 miRNA 靶标组学

阅读:4
作者:Martin Hart #, Fabian Kern #, Claudia Fecher-Trost, Lena Krammes, Ernesto Aparicio, Annika Engel, Pascal Hirsch, Viktoria Wagner, Verena Keller, Georges Pierre Schmartz, Stefanie Rheinheimer, Caroline Diener, Ulrike Fischer, Jens Mayer, Markus R Meyer, Veit Flockerzi, Andreas Keller #, Eckart Meese 

Abstract

The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD). After performing 13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses on the MTI level is available online ( https://ccb-web.cs.uni-saarland.de/utr-seremato ), and all the data have been added to the miRATBase database ( https://ccb-web.cs.uni-saarland.de/miratbase ).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。