Monensin and Nisin Affect Rumen Fermentation and Microbiota Differently In Vitro

莫能菌素和乳酸菌素在体外对瘤胃发酵和微生物群的影响不同

阅读:4
作者:Junshi Shen, Zhuang Liu, Zhongtang Yu, Weiyun Zhu

Abstract

Nisin, a bacteriocin, is a potential alternative to antibiotics to modulate rumen fermentation. However, little is known about its impacts on rumen microbes. This study evaluated the effects of nisin (1 and 5 μM) on in vitro rumen fermentation characteristics, microbiota, and select groups of rumen microbes in comparison with monensin (5 μM), one of the most commonly used ionophores in ruminants. Nisin had greater effects than monensin in inhibiting methane production and decreasing acetate/propionate ratio. Unlike monensin, nisin had no adverse effect on dry matter digestibility. Real-time PCR analysis showed that both monensin and nisin reduced the populations of total bacteria, fungi, and methanogens, while the population of protozoa was reduced only by monensin. Principal component analysis of bacterial 16S rRNA gene amplicons showed a clear separation between the microbiota shaped by monensin and by nisin. Comparative analysis also revealed a significant difference in relative abundance of some bacteria in different taxa between monensin and nisin. The different effects of monensin and nisin on microbial populations and bacterial communities are probably responsible for the discrepancy in their effects on rumen fermentation. Nisin may have advantages over monensin in modulating ruminal microbial ecology and reducing ruminant methane production without adversely affecting feed digestion, and thus it may be used as a potential alternative to monensin fed to ruminants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。