The Novel Anti-Cancer Agent, SpiD3, Is Cytotoxic in CLL Cells Resistant to Ibrutinib or Venetoclax

新型抗癌药物 SpiD3 对对伊布替尼或维奈克拉具有耐药性的 CLL 细胞具有细胞毒性

阅读:6
作者:Alexandria P Eiken, Elizabeth Schmitz, Erin M Drengler, Audrey L Smith, Sydney A Skupa, Kabhilan Mohan, Sandeep Rana, Sarbjit Singh, Jayapal Reddy Mallareddy, Grinu Mathew, Amarnath Natarajan, Dalia El-Gamal

Background

B-cell receptor (BCR) signaling is a central driver in chronic lymphocytic leukemia (CLL), along with the activation of pro-survival pathways (e.g., NF-κB) and aberrant anti-apoptotic mechanisms (e.g., BCL2) culminating to CLL cell survival and drug resistance. Front-line targeted therapies such as ibrutinib (BTK inhibitor) and venetoclax (BCL2 inhibitor) have radically improved CLL management. Yet, persisting CLL cells lead to relapse in ~20% of patients, signifying the unmet need of inhibitor-resistant refractory CLL. SpiD3 is a novel spirocyclic dimer of analog 19 that displays NF-κB inhibitory activity and preclinical anti-cancer properties. Recently, we have shown that SpiD3 inhibits CLL cell proliferation and induces cytotoxicity by promoting futile activation of the unfolded protein response (UPR) pathway and generation of reactive oxygen species (ROS), resulting in the inhibition of protein synthesis in CLL cells.

Conclusions

Our results substantiate the development of SpiD3 as a novel therapeutic agent for relapsed/refractory CLL disease.

Methods

We performed RNA-sequencing using CLL cells rendered resistant to ibrutinib and venetoclax to explore potential vulnerabilities in inhibitor-resistant and SpiD3-treated CLL cells.

Results

The transcriptomic analysis of ibrutinib- or venetoclax-resistant CLL cell lines revealed ferroptosis, UPR signaling, and oxidative stress to be among the top pathways modulated by SpiD3 treatment. By examining SpiD3-induced protein aggregation, ROS production, and ferroptosis in inhibitor-resistant CLL cells, our findings demonstrate cytotoxicity following SpiD3 treatment in cell lines resistant to current front-line CLL therapeutics. Conclusions: Our results substantiate the development of SpiD3 as a novel therapeutic agent for relapsed/refractory CLL disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。