HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation

HIF-1α 通过激活 hippo-YAP 通路介导睡眠呼吸暂停中的高血压和血管重塑

阅读:8
作者:Shoude Zhang, Yuan Zhao, Zhanwei Dong, Mao Jin, Ying Lu, Mina Xu, Hong Pan, Guojin Zhou, Mang Xiao

Background

Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

Conclusions

Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.

Methods

We established a rat model of SAS-induced hypertension via chronic intermittent hypoxia (CIH). Rats were treated with siRNA targeting HIF-1α. Blood pressure, inflammation, oxidative stress, vascular remodeling, and VSMC function were assessed. In vitro experiments with A7r5 cells and human aortic smooth muscle cells (HAoSMCs) explored the effects of HIF-1α silencing and YAP1 overexpression.

Results

Compared with the control group, the CIH group presented significant increases in both HIF-1α and YAP1 expression, which correlated with increased blood pressure and vascular changes. HIF-1α silencing reduced hypertension, oxidative stress, inflammation, and the severity of vascular remodeling. Specifically, siRNA treatment for HIF-1α normalized blood pressure, decreased the levels of oxidative damage markers (increased SOD and decreased MDA), and reversed the changes in the levels of inflammatory markers (decreased high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and soluble E-selectin (sE-s)). Structural analyses revealed reduced vascular smooth muscle cell proliferation and collagen deposition, along with normalization of cellular markers, such as α-SMA and TGF-β1. Furthermore, the Hippo-YAP pathway appeared to mediate these effects, as evidenced by altered YAP1 expression and activity upon HIF-1α modulation. Conclusions: Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。