Acutely elevated O-GlcNAcylation suppresses hippocampal activity by modulating both intrinsic and synaptic excitability factors

急性升高的O-GlcNAc化通过调节内在和突触兴奋性因素来抑制海马活动

阅读:6
作者:Hongik Hwang, Hyewhon Rhim

Abstract

Post-translational modification (PTM) plays a critical role in increasing proteome complexity and diversifying protein functions. O-GlcNAc modification is a reversible, dynamic and highly abundant PTM catalyzed by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), regardless of substrates. The two enzymes are particularly enriched in the brain, and recent proteomic studies identified that a large number of neuron-specific proteins undergo O-GlcNAc modification. In addition, pathological conditions with aberrant O-GlcNAcylation such as diabetes and obesity are associated with the higher risk of cognitive decline and memory impairment. However, despite its prevalence in the brain, functional significance of O-GlcNAcylation in regulating neuronal properties remains unclear at the molecular level. Here, we report that an acute increase in O-GlcNAcylation induced by pharmacological inhibition of OGA significantly reduces the intrinsic excitability of hippocampal CA1 neurons through the cooperative modulation of multiple voltage-gated ion channels. Moreover, elevated O-GlcNAcylation also suppresses excitatory synaptic transmission at Schaffer collateral-CA1 synapses through the removal of GluA2-containing AMPA receptors from postsynaptic densities. Collectively, our findings demonstrate that a change in O-GlcNAcylation levels dynamically regulates hippocampal activity at both intrinsic and synaptic levels, providing a mechanistic link between dysregulated O-GlcNAcylation and hippocampal dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。