Gαq/11 aggravates acute lung injury in mice by promoting endoplasmic reticulum stress-mediated NETosis

Gαq/11通过促进内质网应激介导的NETosis加重小鼠急性肺损伤

阅读:7
作者:Qian Xiang #, Yang Tian #, Kai Yang #, Yaqin Du, Jian Xie

Background

Acute lung injury (ALI) is distinguished by exaggerated neutrophil extracellular traps (NETs), elevated clinical mortality rates, and a paucity of targeted therapeutic interventions. The Gαq/11 protein, a member of the G protein subfamily, is an effective intervention target for a variety of diseases, but little is known about its role in ALI.

Conclusions

The upregulation of Gαq/11 exacerbates ALI through the promotion of ER stress-mediated NETosis. Consequently, Gαq/11 represents a potential therapeutic target for the treatment of ALI.

Methods

In this study, a murine model of ALI induced by lipopolysaccharide (LPS) was utilized, employing myeloid cell-specific Gna11 knockout mice. The pulmonary pathology of mice was assessed and the lung samples were collected for immunofluorescence staining and RNA-sequencing analysis to elucidate the impact and underlying mechanisms of Gαq/11 in ALI. Mouse bone marrow-derived neutrophils were isolated and cultured for live-cell imaging to investigate the in vitro effects of Gαq/11.

Results

The expression of Gαq/11 was found to be upregulated in the lung tissues of mice with ALI, coinciding with the increased expression of inflammatory genes. Myeloid cell-specific Gna11 deficience attenuated LPS-induced lung injury and the formation of NETs in mice. Mechanistically, Gαq/11 facilitates NETosis by promoting the activation of the endoplasmic reticulum (ER) stress sensor IRE1α in neutrophils and mediating the production of mitochondrial reactive oxygen species (mitoROS). Pharmacological inhibition of Gαq/11 using YM-254,890 was shown to reduce NETs formation and lung injury in mice. Conclusions: The upregulation of Gαq/11 exacerbates ALI through the promotion of ER stress-mediated NETosis. Consequently, Gαq/11 represents a potential therapeutic target for the treatment of ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。