Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria

致病菌和非致病菌Eis样酶的比较研究

阅读:7
作者:Keith D Green, Rachel E Pricer, Megan N Stewart, Sylvie Garneau-Tsodikova

Abstract

Antibiotic resistance is a growing problem worldwide. Of particular importance is the resistance of Mycobacterium tuberculosis (Mtb) to currently available antibiotics used in the treatment of infected patients. Up-regulation of an aminoglycoside (AG) acetyltransferase, the enhanced intracellular survival (Eis) protein of Mtb (Eis_Mtb), is responsible for resistance to the second-line injectable drug kanamycin A in a number of Mtb clinical isolates. This acetyltransferase is known to modify AGs, not at a single position, as usual for this type of enzyme, but at multiple amine sites. We identified, using in silico techniques, 22 homologues from a wide variety of bacteria, that we then cloned, purified, and biochemically studied. From the selected Eis homologues, 7 showed the ability to modify AGs to various degrees and displayed both similarities and differences when compared to Eis_Mtb. In addition, an inhibitor proved to be active against all homologues tested. Our findings show that this family of acetyltransferase enzymes exists in both mycobacteria and non-mycobacteria and in both pathogenic and nonpathogenic species. The bacterial strains described herein should be monitored for rising resistance rates to AGs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。