Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds

在细菌中表达的人类丁酰胆碱酯酶的二聚化用于开发热稳定的有机磷化合物生物清除剂

阅读:9
作者:Yingting Cai, Shuo Zhou, Madeline J Stewart, Fang Zheng, Chang-Guo Zhan

Abstract

Human butyrylcholinesterase (BChE) is a widely distributed plasma enzyme. For decades, numerous research efforts have been directed at engineering BChE as a bioscavenger of organophosphorus insecticides and chemical warfare nerve agents. However, it has been a grand challenge to cost-efficiently produce BChE in large-scale. Recently reported studies have successfully designed a truncated BChE mutant (with amino-acid substitutions on 47 residues that are far away from the catalytic site), denoted as BChE-M47 for convenience, which can be expressed in E. coli without loss of its catalytic activity. In this study, we aimed to dimerize the truncated BChE mutant protein expressed in a prokaryotic system (E. coli) in order to further improve its thermal stability by introducing a pair of cross-subunit disulfide bonds to the BChE-M47 structure. Specifically, the E377C/A516C mutations were designed and introduced to BChE-M47, and the obtained new protein entity, denoted as BChE-M48, with a pair of cross-subunit disulfide bonds indeed exists as a dimer with significantly improved thermostability and unaltered catalytic activity and reactivity compared to BChE-M47. These results provide a new strategy for optimizing protein stability for production in a cost-efficient prokaryotic system. Our enzyme, BChE-M48, has a half-life of almost one week at a 37°C, suggesting that it could be utilized as a highly stable bioscavenger of OP insecticides and chemical warfare nerve agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。