Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma

基于空间组学的机器学习算法用于早期检测肝细胞癌

阅读:4
作者:Mengjun Wang, Stephane Grauzam, Muhammed Furkan Bayram, James Dressman, Andrew DelaCourt, Calvin Blaschke, Hongyan Liang, Danielle Scott, Gray Huffman, Alyson Black, Shaaron Ochoa-Rios, David Lewin, Peggi M Angel, Richard R Drake, Lauren Ball, Jennifer Bethard, Stephen Castellino, Yuko Kono, Naoto K

Background

Worldwide, hepatocellular carcinoma (HCC) is the second most lethal cancer, although early-stage HCC is amenable to curative treatment and can facilitate long-term survival. Early detection has proved difficult, as proteomics, transcriptomics, and genomics have been unable to discover suitable biomarkers.

Conclusions

In conclusion, we present the development and application of a new biomarker platform, which can identify effective biomarkers for the early detection of HCC. This platform may also apply to other diseases, in which changes in N-linked glycosylation are known to occur.

Methods

To find new biomarkers of HCC, we utilized a spatial omics N-glycan imaging method to identify altered glycosylation in cancer tissue (n = 53) and in paired serum of individuals with HCC (n = 23). Glycoproteomics identified the glycoproteins carrying these N-glycan structures, and we utilized an antibody array-based glycan imaging method to examine all the N-glycans associated with the identified glycoproteins. N-glycans from the examined glycoproteins were used to create machine learning algorithms, which were tested in a case-control sample set of 100 patients with cirrhosis and HCC and 101 matched patients with cirrhosis alone.

Results

Spatial glycan imaging identifies thirteen branched, fucosylated, and high mannose glycans as altered in HCC tissue and in matched patient serum. Glycoproteomics identifies over 50 proteins containing these changes, of which sixteen glycoproteins were selected for further testing in an independent patient set. Algorithms using a combination of glycan and glycoproteins accurately differentiate early-stage and all HCC from cirrhosis with AUROC values of 0.88-0.97. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。